Convolutive Decorrelation Procedures for Blind Source Separation

نویسنده

  • R. Vollgraf
چکیده

Convolutive decorrelation algorithms form a class of powerful algorithms for blind source separation. In contrast to ICA, they are based on vanishing second order cross correlation functions between sources. We provide an analyze an unifying approach for convolu-tive decorrelation procedures. The convolutive decor-relation procedures impose the problem of simultaneously diagonalizing a number of covariance matrices. We examine diierent cost functions for simultaneous diagonalization with respect to the demixing matrix. It turns out, that best performance is achieved for a cost function, that takes the squared sum of the oo diagonal elements after the diagonal elements were normalized to unity. We then provide criteria for convolu-tion kernels, that are optimal for noise robustness and which can guarantee positive deenite covariance matrices , which are important for reliable convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Signal Deconvolution by Spatio Temporal Decorrelation and Demixing

In this paper we present a simple efficient local unsupervised learning algorithm for on-line adaptive multichannel blind deconvolution and separation of i.i.d. sources. Under mild conditions, there exits a stable inverse system so that the source signals can be exactly recovered from their convolutive mixtures. Based on the existence of the inverse filter, we construct a two-stage neural netwo...

متن کامل

A Unifying Criterion for Blind Source Separation and Decorrelation: Simultaneous Diagonalization of Correlation Matrices

Blind source separation and blind output decorrelation are two well-known problems in signal processing. For instantaneous mixtures, blind source separation is equivalent to a generalized eigen-decomposition, while blind output decorrelation can be considered as an iterative method of output orthogonalization. We propose a steepest descent procedure on a new cost function based on the Frobenius...

متن کامل

On the convolutive mixture source separation by the decorrelation approach

In this paper, we consider the problem of blind separation of causal minimum phase convolutive mixtures of two sources. We study in detail the so-called decorrelation approach. It consists in finding a causal minimum phase filter which, driven by the observations, produces decorrelated outputs. It is well established that this approach allows to separate the sources if the mixing filter is a no...

متن کامل

A Method of Blind Separation on Temporal Structure of Signals

STRUCTURE OF SIGNALS Shiro Ikeda and Noboru Murata Email:fShiro.Ikeda,[email protected] RIKEN Brain Science Institute Hirosawa 2-1, Wako, Saitama 351-0198, Japan ABSTRACT In this article, we propose an Blind Source Separation algorithm for convolutive mixture of signals. We propose a method of separating signals in the time-frequency domain. We apply the decorrelation method prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000